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Abstract
eling of geospantal data is a complex procedure affected by spatial context, mechanism and assumptions. In order to make spatial modeling

Spatial analysis is a multidisciplinary field that involves multiple influential factors, variation and uncertainty, and mod-

easier, some scholars have suggested a lot of knowledge from exploratory data analysis (EDA), specification of the model, fitness and di-
agnosis of the model, to interpretation of the model. Also an amount of software has improved some {unctionalities of spatial analysis, e.
g. EDA by the dynamic link (GeoDa) and robust statistical calculation {R). However, there are few programs for spatial analysis that can
automatically deal with unstructured declarative issues and uncertainty in machine modeling using the domain knowledge. Under this con-
text, this paper suggests a prototype support system for spatial analysis that can automatically use experience and knowledge from the ex-
perts to deal with complexity and uncertainty in modeling. The knowledge base component, as the major contribution of the system, in
support of the expert system shell, codes and stores declarative modeling knowledge, e.g. spatial context, mechanisms and prior knowl-
edge to deal with declarative issues during the modeling procedure. With the open architecture, the system integrates functionalities of oth-

er components, e.g. GIS’ visualization, DBMS, and robust calculation 1n an interactive environment. An application case of spatial sam-
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pling, design and implementation of spatial modeling with such a system is demonstrated.

Keywords: spatial analysis, automatic support system, modeling of spatial data, artificial inference for modeling.

Spatial analysis has received an extensive theo-
retical research. Scholars have done a lot of work,
e.g. from Kriging’ s Geostatistics in the 1950s fol-
lowed by Tobler’ s Thumb Rule of Geography in
1979, Cressie’ s classic book, Statistics for Spatial
Data'! and Anselin’ s monograph, Spatial Eco-

2 1o Haining’ s recent book, Spatial Data

nomzics
Analysis: Theory and Practice'®. Considering com-
plexity of spatial modeling influenced by background
knowledge, spatial context and heterogeneous fac-
tors, some scholars'’™) have introduced a lot of
knowledge of spatial modeling from exploratory data
analysis (EDA), specification of the model, fitness
and diagnosis of the model, to re-specification and in-
terpretation of the model. The theories and methods
have established a good ground for spatial analysis.
Simultaneously, there have been an increasing num-
ber of tools for spatial analysis such as WinGSLib"’, S
Plus'®, SAGE!*), Crime Stai®’, GeoDa and R”,
just to mention a few. This is also exemplified by the
growing contents of the software clearinghouse main-
tained by the U. S.-based Center for Spatially Inte-

grated SocialScience (CSISS, www. csiss. com) .

However, the theoretical studies of spatial analy-
sis and the available softwares cannot still satisfy the
demand for handling a great amount of spatiotemporal
data being produced each day by a burgeoning amount
of GISs strong in management and visualization in
spatial datal® 1]

What accounts for the disconnection between da-
ta and methods is also partly responsible for the phe-
nomenon of “rich-data-but-few-knowledge”[''!. The
reasons are multilateral but the major reason is over-
specialization, weak interoperation of softwares, and
lack of popular understanding of the methods. Many
softwares have been developed independently in dif-
ferent ways that has led to less interaction. Further,
most programs have been developed for special uses
within a certain domain (e.g. SpacSta for economet-
rics, WinGSLib for mining, GeoStatist- ic+ and
SAGE for environmental modeling and Crime Stat for
criminalistics) that leads to less universality and over-
specialization. Consequently, while these programs
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stand as crisp modeling software, much of knowledge
about how to model the practical problem and find the
solution lies dormant in scientific papers, modeling
code and experts’ heads!'?’.

Some software has done some work to decrease
specialization and improve readiness-to-use and inter-
operation. For instance, Anselin’s GeoData does very
well in graphic user interface (GUI), exploratory
spatial analysis with the dynamic link and interopera-
tion. Another case is the open-source R environment
whose robustness in programmable, customable and
extensible functionality represents the state-of-the-art
spatial statistical computation.

Nevertheless, these improvements have seldom
concerned the functionality of unstructured artificial
inference that can use the modeling experience and
declarative knowledge from the proficient researchers
and appliers to guide users to explore relationships a-
mong data, identify influential factors and variations,
construct the model, diagnose and interpret the mod-
el. In fact, many spatial models involve elaborate
know-how, i.e. spatial context, mechanisms and as-
sumptions other than procedural reasoning. A typical
case is modeling of spatial variation that is an iterative
process involving manifold knowledge of different ap-
plication domains, statistics and uncertainty ete.
Without support of suitable helpful auto-human tools,
users often need to spend a lot time to learn modeling
knowledge before doing it well. Such a lengthy learn-
ing curve is time-consuming and not cost effective to
applications of methods.

Under the context, this paper presents a proto-
type human-automated support system for spatial
analysis. Compared with the previous softwares, this
prototype’s major contribution is the support of
knowledge base functionality that can code and mate-
rialize background knowledge and expert experience
of spatial modeling to guide users to model spatial
problems. Also this paper suggests the integrative
framework of such a system, a good start for us to
build an open, automated, scalable and extensible
support tool for spatial analysis. In the following
parts, Section 1 briefly introduces techniques used
and the system architecture, Section 2 describes the
major components of the system, Section 3 presents
the modeling procedure using the example of spatial
regression, Section 4 demonstrates the modeling proc-

1) ERDAS 2000. ERDAS user’s manual

edure with an application case of spatial sampling,
and Section 5 makes a brief summary.

1 Techniques and system architecture
1.1 The knowledge base system

As an artificial intelligence tool, the expert sys-
tem (ES) uses knowledge base to store declarative
knowledge, including expertise and experience from
domain experts that cannot be contained in procedural
models, and uses the knowledge and relevant infer-
ences to help solve complicated decision problems.

The expert system has been successfully applied
to a wide range of domains, e.g. CRYSALIS for in-
terpretation of the protein’s structure, PUFF for di-
agnosing the lung disease, REACTOR for detecting
the nuclear reactor’ s accident, PROSPECTIOR for
interpreting mineral geological stuff and YES/MVS
for monitoring the IBM MVS’s operation system etc.
In recent years, the expert system has been also used
to solve some geospatial problems. Leung successfully
developed a fuzzy expert system shell to help risk
(101" and Li developed the model

base system with limited automated support for the
[13]

analysis of disasters
regional resources’ modeling Some RS imagery
processing software, say ERDAS, has developed the
knowledge base inference module to help information
processing and interpretation of images!’ .

As the crucial part of the prototype system, the
expert system component is responsible for use of the
knowledge base to code expertise of spatial analysis
modeling, and artificial inference to solve complex
problems involving multiple spatial factors and uncer-
tainties. The inherent artificial inference and explana-
tion facilities of the expert system make easier EDA,
selection of the fit model, diagnosis and interpretation
of the model in modeling. The artificial inference
functionality of the prototype system, as its major
virtue, makes it different from the procedural soft-
ware of spatial analysis, e.g. WinGSLib, SAGE, R
and GeoDa.

In this study, the open-source expert system
program, CLIPS is adapted for our own shell. CLIPS
is the acronym of the C Language Integrated Produc-
tion System and was developed by the NASA’s John-
son Space Center to avoid the high cost and poor inte-
gration brought by adopting LISPY . Since 1986,

2) CLIPS, CLIPS reference manual: Advanced programming guide, Vol. 3, 2002
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CLIPS has helped the delivery of expert system tech-
nology for a wide range of applications, including
geosciences[m. Portability, compatibility, extensi-
bility, capabilities and low-cost of CLIPS make it an
ideal option for developing the inbuilt expert system
shell.

CLIPS is a {forward-chaining language. In
CLIPS, knowledge is represented as objects, frames,
facts and rules, and reasoning is driven by facts. This
expert system’ s structure is typical and consists of
seven essential components.

1) User interface: The mechanism by which the
user and the expert system communicate.

2) Fact-list: A global memory for data. For ex-
ample, a user’s demand for interpolation is represent-
ed in CLIPS syntax as a fact;

First, the fact template is defined by the key-
word “deftemplate ” :

( deftemplate Demand. of . Simple- Model
(multislot name) (slot duty) (slot a_ domain) (slot
xor _ spatial - correlation) ) .

Then, the fact is specified using the template by
the key word “deffacts” :

(deffacts Demand_ of - Simple . Model ( name:
Xin Li) (duty: interpolation) {a_ domain: rainfall)
( xor _ spatial - correlation: YES)).

where the bold keyword, deftemplate is the definition
of the fact’s template of the demand, and the key-
word, deffacts gives the fact’s definition. Each fact
consists of one or multiple properties (signified by the
keyword, slot or multislot) .

3) Knowledge base: The set of all the facts,
frames, objects and IF-THEN rules.

For instance, consider the following rule of judg-
ing the global pattern of spatial points in the Moran’s
Coefficient (MC) model (No is the total number of
the sample points, A (delta) is the allowed departure
degree) :

IF MC * A is greater than -1/(No-1)

THEN the distribution of the spatial points is
positively correlative and spatial statistics methodolo-
gy suggested.

In the CLIPS syntax, this rule is defined by the
keyword “defrule”

(defrule pattern_ of_ global_ spatial  points
(Sum?No& : (integerp?No) ) (Delta7deltaé :
(numberp?delta)) (MoranCo?MC& : (numberp?

MC)) (test ( >7(MC + delta) -1/(?No-1))) (test
(>7(MC-delta) -1/(?No-1)))

=> (assert (correlation spatial positive)) (assert
(method _ type spatial)) .

The LHP (left-hand-part) before “=" is the
pre-conditions required to be satisfied before the RHP
(right-hand-part) can be executed. In this rule, the
LLHP regulates the type of the variables ( No, delta
and MC) and the condition ( MC * delta >-1/(No-
1)) so that their spatial positive correlation can be as-
serted (assert ( correlation. . .)) and the spatial statis-
tical method is recommended ( assert ( method-

type...)).

The knowledge bases are organized as modules
and the ground for making artificial inference.

4) Inference engine: Make inferences by decid-
ing which rules are satisfied by facts, prioritizes the
satisfied rules and executes the rule with the highest
priority.

5) Agenda: A prioritized list created by the in-
ference engine of instances of rules whose patterns are
satisfied by facts in the fact list.

6) Explanation facility: Explain the inference of
the problem-solving process for users.

7) Knowledge acquisition facility: Be responsible
for acquiring knowledge by manual or machine learn-
ing (ML) means. The ML methods include induc-
tion, analogue, and decision tree, etc.

1.2 Architecture and techniques for the open system

Besides the ES shell, the prototype system in-
cludes other modules which are organically integrated
with the shell. From the software engineering’s per-
spective, the whole system should be designed and
developed on the open, scalable, extensible and auto-
matic architecture. Fig. 1 briefly illustrates the open
architecture of the system whose core consists of three
parts, the model base, the model knowledge base and
the engine environment,
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In the architecture, the model base includes ele-
mentary and application models and the Manager for
Model Bases (MMB) is responsible for management
of the models through the mode! dictionary (Fig. 1
(a)); the model knowledge base contains the knowl-
edge about models and modeling, and the Manager
for Model Knowledge Bases (MMKRB) is responsible
for management of the knowledge base (Fig. 1(b));
the engine environment is responsible for providing
data conversion, connection with GIS components or
other database systems, transaction of modeling etc.
(Fig. 1(c)). The environment’s major role is to en-
sure coordination and interactions between modules.

The component technology, an industrial stan-
dard protocol of software development is the essential
technology for development of the open system.
Component-based programs are fully used to improve
efficiency of developing the system from scratch-
est® 3] For instance, component-compatible GIS
such as MapObjects is used for visual exploration and
representation of results; standard database manage-
ment systems, e.g. Oracle, are used to manage the
aspacial data and the dictionaries of the model and
knowledge bases; the software with robust calculation
functionality (e. g. MATLAB) serves as calculation
support; the open codes of the ES software, CLIPS is
adapted into an independent module with universal
interfaces to other modules. The UML tool is used to

The architecture of the prototype system.

help design component modules! '

2 Major components of the system
2.1 Model base

The model base includes all models. The Manag-
er for Model Bases (MMB) is responsible for creat-
ing, storing, retrieving, running and managing the
model base (Fig. 1(a)). Models in the base are cate-
gorized into elementary and application types. In the
mode! base, all models are packaged within the model
library with each model contained in a binary compo-
nent file (for Microsoft’s COM, the file type is dll or
ocx). As an effective way of retrieving the meta-data
of models, the Model Dictionary (MD) manages the
models as the MMB’s core.

The Model Dictionary contains key items storing
the meta-data for each model (Table 1). Among
these items, “elementary or not” indicates the model’
s type (elementary or application), “Applicable do-
main” and “Assumption” suggest the application do-
main and pre-conditions respectively, “Location” i-
dentifies the address (path, file and component name
etc. ) where the model is stored, and “Index of inter-
faces” illustrates related interfaces of this model com-
ponent. Table 1 also gives a specific example of the

Moran Coefficient (MC) model.
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Table 1. Items in the Model Dictionary and M( case
[tems Moran coefficient model
Model name MC
Purpose To measure spatial dependence at the
global scale
Algorithm Measure the degree of spatial depen-
description dence

Applicable domain ~ Geospatial features with the spatial cor-

relation
Applicable The objects distributed randomly in the
assumption space

Elementary or not  Yes
Input format Text format: Matrix X and C; »
Text format: coefficient—MC

MC - App_Rulel, MC App- Rule2, ...

Output format
Index of rules
Index of models None

COM module: lib \ spbasics. dll
IMC Emodel( features and methods)

Location

Index of interfaces

Author Li X.

Version No. 1.0

Time 2004-01-10

Memo Reference: Cressie 1991(1).

The Moran coefficient model measures spatial
autocorrelation at global scale. In the model where n
denotes the total number of spatial points, MC+ A=
~1/(n —1) (A is the allowed random departure de-
gree) indicates a random map pattern, MC + A >
—1/(n — 1) indicates a positive correlation pattern
and MC + A< = 1/(#n — 1) indicates a negative corre-
lation pattern. The MC value is an indicator for spa-
tial dependence and for whether classical or spatial
statistical models should be adopted.

Each model is developed in support of other
models or the calculation software, say MatLab. This
way decreases the repeatable work in a certain de-
gree, thus saving time. Also each new model needs to
register itself in the model dictionary and the model
knowledge base needs to input relevant rules if neces-
sary.

The duties of spatial analysis are categorized into
several types, i.e. exploration of spatial correlation,
modeling of spatial variation, identifying spatial outli-
er or hot spots and spatial sampling etc., as listed on
the left side of the dotted line in Fig. 2. The right
side of the line listed the referred methods. The mod-
el and knowledge bases are organized as modules ac-
cording to the category in Fig. 2.

Moran’s coefficient
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.2 Model knowledge base

The duties and methodologies of modeling

3%

In the ES shell, knowledge is represented as

frames, objects, facts or rules: meta-information
about every model or algorithm is stored as objects
whose content is similar to Table 1; factual knowl-
edge is stored as facts or frames; conditional judg-
ments and decision-making knowledge during model-
ing are often categorized, organized and implemented
logically according to the classification or decision
trees (Figs. 3—5). Reasoning is based upon IF-
THEN rules and Rete’ s pattern match is the major
inference algorithm. Models are executed as external
functions (for structured models) or rule modules ( for

unstructured models involving declarative inference).

There are 4 types of knowledge with their differ-
ent functionalities in modeling.

1) Knowledge for guidance of users in modeling
of geospatial data

The type of knowledge is knowledge about mod-
eling and models, i.e. prior research, relevant con-

clusions, experience, assumptions and even personal
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opinions and is intended to guide users to analyze the
problem, construct the model, estimate the parame-
ters, examine the result and improve it. These rules
are related with EDA and model specification in mod-
eling. During the guidance, the system first collects

some information from users, mines relations among
variables from the data set using the induction algo-

rithm, explores spatial dependence and specifies the
model.

[Spatial dependence

Object
2-dimension discrete space

Field
2-dimension continuous space

Exponential model
Hole model

Bivariate Semi-variogram Autocovariance Autocorrelation
scatterplot P(h) (Spatial covariance) R )
(.0 Ch)
d=h+ Ah, i Spatial relationship
0=0+ Variogram fitted:
48] Neighborhood:
Spherical model . o Connectivit i ix:
Gaussian model Straight line m:lla;itl Y WelgDhiZst ;::;nx.

Nearest neighbors
Gabriel graphs

Common border
Interative weights
Combined weights

Fig. 3. The classification tree of spatial dependence analysis.

The modeling purposes are categorized into the
types listed in Fig. 1. For instance, analysis of spa-
tial dependence and specification of the model are car-
ried out in two steps in many modeling duties. Fig. 3
makes a summary for analysis of spatial dependence

[7.17] " Based on the sim-

according to relevant theories
ilar but more specific tree, the system can automati-
cally guide users to locate the very algorithm for their
dependence’ s modeling according to their goal and
object under study. Model specification is to construct

the model according to the user’s purpose and the

EDA’s output.
2) Rules for automation of the model’ s judgment

Modeling of geospatial data often involves the
model’ s condition judgment which can be easily han-
dled by the IF-THEN rule and the rule’s pattern
match and inference in the knowledge system obvi-
ously improves the effect and automation level of

modeling for this kind conditional judgment. Section
1.1 while introducing the concepts of rules in CLIPS
illustrates the case of the judgment rule in the
Moran’s Coefficient.

3) Knowledge for diagnosis

The diagnosis is to assess the modeling effect.
There are three types of diagnoses: fitness, substan-
tive meaning and optimization. The fitness diagnosis
measures how the model fits the data; the diagnosis
of substantive meaning measures interpretability of
the model, i.e. how well the model explains the phe-
nomenon (e.g. in spatial regression of the infection,
every predicator and its weight coefficient’s practical
meanings for the problem); the optimization diagno-
sis is for measuring advantages of the model over oth-
ers. Fig. 4 summarizes the types of diagnosis and
methods in a logical tree as the ground for construct-
ing the diagnosis knowledge base.

Diagnosis tools

T

Fitness + Substantive meaning + Optimization

Cross Interpretation Background
validation of diagrams knowledge

Visual
examination

|

Spatial context/ Prior Assumptions Error
spatial structure/ research comparison
spatial context

Fig. 4. Three components of the diagnosis tool.
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4) Knowledge for uncertain and fuzzy inference

Uncertainty and fuzziness are two features of
geospatial data that have the implication for spatial
modeling. Although the original CLIPS doesnot sup-
port fuzzy and uncertain inference, the embedded
shell adapted from CLIPS supports the inference indi-
rectly to some extent by incorporating uncertainty or
fuzzy information, that is adding the slot of Certainty
Factor (CF) and fuzzy slots and executing related cal-
culations by calling external functions'*!.

Uncertainty of the data and models is propagated
during the modeling procedure using the Certainty
Factor slots and MIN-MAX calculation mechanism.
A typical case is the Bayesian probability nerwork

Abbreviated code —— HCA

High-intensity
Crime
Area

Under the evidence E. the
value of the certainty that ——— 10 -0
the hypothesis is true

FCHCA

that uses uncertainty represented as probability in the
model’ s supportive components to induce the model’ s
summary uncertainty. Fig. 5 is a probability-based
uncertainty inference web for prediction of whether a
site is a High-intensity Crime Area (HCA) according
to contributions of regional, local, neighborhood and
individual evidence. Different from spatial regression,
this model is based on the probability inference.
There are similar applications of this method in geo-

sciences, say recognition of the mineral type at a
[14,18]

site

Fuzzy inference is implemented in the fuzzy slot.

A fuzzy spatial modeling of the natural disaster’s risk
f15]

has been done in our initial system

| .OE-5 <=——— Prior probability

Without the evidence E, the

-«——— value of the certainty that

the hypothesis is true
1.0E~4

Favorable combination of regional,
local, neighborhood and individual
evidence suggesting a high-intensity

The FCHCA is the evidence
-«——— of HCA but also the hypothesis
of FRE, FLE, FN and IP.

crime area
f—4 [.5~4 3,-45 LS, LN
FRE |1.0E-4 FLE | 0.0001 FN 0.001 P | P
Favorable Favorable Favorable Individual
regional {ocal neighborhood predicators
environment environment
Fig. 5. A probability inference web for prediction of the attribute value (HCA) at a spatial site.

5) Knowledge for interpretation of the model

Spatial modeling is an interpretable issue that
means that the output needs to account for a certain
social, economic or physical spatial phenomenon. The
background knowledge including spatial scales, spa-
tial process and mechanism is important for inter-
pretability of the model and it is necessary for the
model to give an acceptable substantive explanation
for the problem under study. Due to a great amount
of unstructured knowledge in interpretation, the ES
shell of the prototype system is a natural facility for
interpretation of the output. In the system, there are
three types of interpretations: the first is inference
explanation that is provided by the ES shell’ s inher-
ent facility, the second is interpretation of the numer-
ic values that can be done with common IF-THEN

rules incorporating prior knowledge and the third one
1s interpretation of the diagrams. As for the third
type of interpretation, pattern recognition of the dia-
gram is required to identify the critical, turning, ex-
treme or unique points, the trend of the curve, the
threshold and the dispersion degree of the diagram
that are crucial for the interpretation. Techniques of
the diagram’ s interpretation include recognition of
key points, wavelet transform and clustering etc.
Fig. 6 is a case of interpreting the reason for the long-
range spatial variation of a certain mineral, Co ac-
cording to its prior knowledge.

The boundary between the above types of
knowledge is not strict but closely related. Knowl-
edge for guidance often involves ones for diagnosis and

interpretation.
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=

RHS: In this region, the spatial variation of the Co closely re-

lates with the geological changes.

Fig. 6. The interpretation rules of the variogram.
2.3 The engine environment

The engine environment contains a set of support
modules, each having its COM objects and interfaces
for its correspondent functionality. Table 2 lists the
major modules.

Table 2.  Major functionality modules in the engine environ-
ment

Name Role description in the environment

Data converter To convert data formats between standard DBMS,
e.g. Oracle, GIS and other modules

GIS linker To call GIS interfaces to manage geospatial data for
EDA and representing results.

MMB To manage and maintain the model bases through the
Model Dictionary

MKB To manage the knowledge base and implement artifi-
cial reasoning

UGI To provide a set of public classes and functions to
support UGI development.

Diagnosis tool  To evaluate the modeling output, diagnose the prob-
lem and prepare for improvement

Modeling To use procedural models to accomplish intended cal-
transactor culations

Modeling tool To construct composite models using elementary or
other composite models

Interpretation  To interpret the modeling output according to prior
tool knowledge, context and pattern

Advisor for  To provide a set of integral functionalities with help
spatial of other modules to help users identify their problems
modeling and implement modeling

The central control program or other systems can
call any of these modules through their interfaces to
implement certain functionality. The component-
based engine environment can seamlessly integrate
each component together within a single software en-
vironment while having interaction and scalability
across systems.

3 Modeling procedure
3.1 Design criteria of modeling

Haining summarizes several design criteria for
geospatial modeling!?!; fitness-for-purpose, robust-
ness, parsimony and uncorrelated residuals. “Fitness-
for-purpose” means that the model should be designed
to solve the problem under study and give a reason-
able explanation to the answers. Robustness means
that there is no serious correlation among the predica-
tors and parameters are interpretable in theory. Parsi-
mony means that where there is a choice, always
choose the simple one. Uncorrelated residuals mean
that the residual in the model should be free of spatial
correlation and distributed randomly. The criteria are
the directives for the iterative geospatial modeling in
our prototype system.

3.2 Modules and procedure of modeling

Fig. 7(a) represents a brief modeling procedure
that involves major modules (Fig. 7 (b)) and
(knowledge and model) bases (Fig. 7 (c)). In
Fig. 7, the module, Advisor for Spatial Modeling
(ASM) is to guide users in the modeling. In support
of other modules and bases, ASM initiates the model-
ing from EDA, model specification, diagnosis, re-
specification and interpretation:

(1) User information collection and EDA

The first step is intended to identify the nature
of the problem, i.e. purpose and duty (Fig. 2),
methods (classical or spatial statistics), data and de-
mand for the accuracy etc. Rule-based knowledge,
i.e. theoretical and substantive considerations, prior
research and assumption (see Section 2.2) is stored in
the EDA knowledge base and used to help users im-
prove their understanding of the problem, find rele-
vant variables and do preparations for modeling.

(2) Model specification

This step specifies a general model for the prob-
lem under study. This step needs to make certain the
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Fig. 7. The modeling procedure and modules involved.

model’s type, components and coefficients of interest
according to prior theories, relevant considerations
and the output from the EDA step (1).

For instance, modeling the ward-level crime rate
in a city needs to consider different predicators, ef-
fects from different level spatial contexts (i. e. spatial
structure), correlation of the response variable from
neighbors and spatial unstructured errors. A multi-
level model is like this:

Y(i,j) =p(i,j )
+p 2 w(i,j, k)Y (i,j) + e(i,}),

kE N(i, )

#(i’j) =7 t ,le(iyj) + 61V(])

+0,V()X(i,j),
where Y (i, j) is the response in (level 1) area ;
which is a member of (level 2) area grouping j;
N(*) denotes the neighbor units and w (i, j, &) is
the element of the connectivity’s weight matrix deal-
ing with the spatial scale of the neighborhood effect;
X(7,j) denotes the effects of predicators at different
spatial levels (e. g. neighborhood, ward, city to
province) .

After the EDA step that uses the ES shell’s in-
duction tool and analysis of spatial correlation, the ef-
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fects of different spatial scales are removed, and just
contributing predictors and spatial autocorrelation of
the response are kept in the model. The simplified
matrix model is represented as: Y = (I — pW) ' XB
+‘u.

(3) Estimation of parameters

This step selects suitable algorithms, say Maxi-
mum Likelihood (ML) to estimate the values of the
parameters of interests.

(4) Model’s diagnosis

This step examines the effects of the model in
terms of its fit acceptability, substantive meaning and
advantages over other models. There are some tradi-
tional step-by-step diagnostic tools, e.g. cross valida-
tion and error comparison for fitness. Our tool is
based on the knowledge base system and its artificial
inference improves the automatic effects of the diag-
nosis by the fault-detection rules in combination with
traditional methods (Fig. 4). For example, a rule
examining the conflict between the parameter’s esti-
mate and the true value’s constraints can easily find
the fault of the model or abnormality of the predica-
tor’ s contribution to the response.

(5) Problem analysis and model’ s re-specifica-
tion

When the model cannot satisfy the criteria or a
new theory makes the model up dated, re-specifica-
tion of the model is needed. The above steps from
(1) to (4) are repeated with new information or as-
sumptions considered critically in the updated model
so as to reflect the real or new circumstance. Consider
the example in step (2). If we find the considerable
effects of wider spatial scales and the trivial effect of
spatial autocorrelation of the response, the model

needs to remove its autocorrelation component
(p Z w(i,j,k)Y(i,j)) and add the compo-
kEN(1, 1)

nents (u (i, j)) from the effect of bigger spatial
scales. The new model is like this: Y (i, )= p (i,
i)te(i,j).

(6) Interpretation of the model

Due to the fact that modeling of spatial data is
often used to simulate and explain a social, economi-

cal or physical phenomenon, there are strong back-
ground, spatial context, mechanisms and process be-

hind the model and interpretation of spatial modeling
is ad hoc important in terms of the model’s accept-
ability. The explanation facility of the ES shell and
its inherent functionality handing the unstructured
knowledge provide the natural mechanism for the in-
terpretation. There are three types of interpretations
(see Section 2.2). The first one is the explanation of
inference naturally provided by the ES shell; the sec-
ond one is interpretation of the diagram that is impor-
tant for EDA and representation of the result and the
rule base of pattern recognition of the diagram is a fa-
cility for this functionality; the third one is interpre-
tation of model’ s parameters of interest, that is sub-
stantive meaning of the parameter’ s values for the
problem and this is supported by prior knowledge,
e.g. the weight for every predicator expresses the
contribution degree of the predicator to the response.

4 Discussion with an application case

This section discusses an application of our sys-
tem in spatial sampling decision.

Qur study’s area is Shandong Province, China.
Our direct goal is to estimate the ratio of the pure cul-
tivatable land’ s area to the total land’ s one in a region
and our study purpose is to design an optimal sam-
pling scheme for later estimation of the ratio in order
to save the survey’s cost.

An amount of knowledge about spatial sam-
pling“g—zz] has been referred, categorized and orga-
nized as objects (for sampling models), facts (for fac-
tual stuff such as criteria), and rules (for knowledge
about modeling and conditional judgment) into the
knowledge bases. With the help of the system, the
modeling of spatial sampling decision is carried as the
following.

(1) EDA and information collection

This step is to find influential factors, explore
the autocorrelation of the samples and estimate some
prior values, i.e. the prior mean and variance of the

samples.

Fig. 8 is the dialogue box for collecting informa-
tion from users. According to the type of the duty
and the MC value of the samples’ autocorrelation,
the output from this step indicates that there is no di-
rect influential factors and that spatial sampling meth-
ods are preferred due to MC>1.
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Fig. 8. The dialogue box for collecting information from users.

Further, according to the type of the geo-feature
under study (land) and prior knowledge!"?%1, the
output suggests two algorithms for estimating the
spatial correlation, Wang’s E,[r,(a —a")] and the

variogram ¥ (h Yy,
(2) Specification of models

According to the step {1)’s output, heterogene-
ity of the region’s land, and the long-range spatial
variation (Fig. 9), the step’s output indicates the
stratified and random sampling frames and three spec-
ified spatial sampling models; Wang’s sampling mod-
el of discrete two-stratified
( SMDTSG ), stratified spatial  sampling
(SSS)2 and the Kriging model. Also the change-
curve-of-error method is also recommended!?!!.
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Fig. 9. Semi-variogram and its fit curve. The unit of the sample
is the percentage of the cultivable farm’ s area in the total land’s
area. About varigram’s calculation, please refer to Ref. [5].

(3) Fitness of the models

There are two kinds of fitness. The first is of the
variogram and the other is of the change curve of the
error with the number of samples as an independent
variable.

For the semivariogram, based on the plot pat-
temn, the spherical model has been chosen to fit the
data and the parameters’ estimates are: Cy=0.1,
Cc,~1.1; a,,~0.3 (Fig. 9).

the number of samples
needs to change from small to big to get the curve’s

For the error curve,

trend. To decrease the effect of uneven sampling and
too-clustering of samples, sampling has been carried
out many times at every fixed number of samples to
get as objectively the curve’s trend as possible. These
opinions are output when users inquire the system for
directives of methods. According to the error scatter-
plot’ s pattern, the exponential fit model has been
recommended to fit these points by the ES shell and
Fig. 10(a) gives the error’s fit curves for the intend-
ed models (SMDTMG, SSS and Kriging) and the
model for comparison (simple random).

(b)

Rule inference Knowledge source

LHS Geo-feature: land and MC>1
=> RHS: algorithms for spatial correlation

Prior research and theory
of spatial variation

LHS regional heterogeneity and long-range variation | Theones of sampling and
=>RHS: stratified and rendom sampling frame spatial vanogram

LHS geo-feature: land, heterogeneity, and obvioms
spatial vanation=>RHS 3 gampling models suggested

Prior research on spstial
sampling and experience

LHS purpose: the trend curve of the error
=>RHS multiple sampling at each number of samples

Experience knowledge. for
even sampling

LHS recognition of the the piot’s pattern
=>RHS fit model recommended

Analysis of the plot’s
pattem, experience of fit

LHS the downward trend of the error curve
=>RHS substantive meaning of the model

The miversal pattern of
the error's change

The interpretation to the plot’s output and inference cases in the sampling application. (a) The interpretation of the comparison

plot of the error; (b) several typical inference rules and their sources in the sampling case.
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(4) Diagnosis of the models

These models selected have been examined using
the diagnosis tool. In terms of fit effects, plot inter-
pretation of several re-sampling calculations and visual
examination gave evidence to support the fitness. As
for substantive meaning, the variogram’s fit curve
(Fig. 9) shows the long-range spatial variation’ s
type and the error fit curves (Fig. 10(a)) basically
reflect a general downward trend. Finally, compared
with other models, Wang’s model proved to be the
best with its least error at the same number of sam-

ples, N(10< N).
(5) Re-specification of the models

Re-specification has been incorporated in the
comparison of multiple models.

(6) Interpretation of the model

The ES shell provides the explanation facility for
the inference procedure. As for the interpretation of
the diagram, Fig. 9 is interpreted as a long-range
structure of spatial variation and hence heterogeneity
of the region and Fig. 10(a) indicates the smallest er-
ror of the SMDTMG and hence its optimal feature.
Regarding substantive meanings of the model, its
sampling structure and equation are suitable for sam-
pling of the similar geo-feature. The values produced
from the model gives valuable clues for surveyors to
design the sampling scheme for the land survey in a
large region (sampling frame, error’ s demand and
the number of samples).

Fig. 10(b) gives several rules and their knowl-
edge sources for the spatial sampling application. The
previous research’ s conclusions, prior knowledge,
theories of spatial correlation, information extracted
from the diagram and declarative knowledge in mod-
els form the foundation for producing the modeling rules.

5 Summary

For complexity of modeling of geospatial data
that involves theoretical and substantial considera-
tions, this paper suggests a prototype auto-human
support system for spatial analysis. With its function-
ality of artificial inference, the system, different from
the previous softwares for spatial analysis, can code
and materialize prior knowledge from researchers and
appliers for EDA, specification, fitness, diagnosis
and interpretation of the model in modeling, hence

being able to use the special knowledge to automati-
cally guide users to model. With a case of optimal
spatial sampling, we have showed how to design the
modeling and carry out the modeling.

Due to the system’s open architecture, the suite
of tools can be scalable, interactive and integrative,
and be improved continually with updates of the
knowledge base and modules. For the coming infor-
mation-grid era, the suite of tools has several issues
deserving endeavors in several directions. The first is
strengthening of the self-learning ability by adding
modules of machine learning and data mining that can
efficiently extract spatial association and relationship
from data. The second is expansion of the knowledge
base that can improve representation and inference of
knowledge. The semantic web having a good logic,
scalability and interoperability of knowledge represen-
tation in support of powerful open-source software is a
very promising technology for guiding modeling. The
third is the parallel calculation of the system that can
make the suite of tools be able to deal with magnanimous
spatiotemporal data in the global web environment.
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